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Hydrologic Processes in a Patterned Peatland: |,

The role of patch anisotropy on discharge competence and

hydroperiod in the Everglades
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Patterning/Pattern Loss in the Everglades

Historic Flow

Ridges and sloughs
existed in an organized
pattern, oriented
parallel to the flow
direction, on a slightly
sloping peatland

Compartmentalization
and water management
activities are resulting in
a landscape that is more
uniform = detrimental
ecological effects (sct,
2003).




Hypotheses for Landscape Formation and Degradation

e Sediment redistribution (Larsen et al., 2007; Larsen and Harvey, 2010, 2011)
* Subsurface nutrient redistribution (ross et al., 2006; cheng et al., 2011)

* Coupled feedbacks between hydrology, vegetation, and carbon:
The “Self-Organizing Canal” Hypothesis (cohen et al., 2011)
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Larsen etal., 2011
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Cheng et al., 2011




Self-Organization and Scale-Dependent Feedback

— Loca|
dispersal

+Autocatalysis +

Short-range facilitation Long-range inhibition

Rietkerk and van de Koppel, 2008




The “Self-Organizing Canal” (SOC) Hypothesis

Point Scale: Carbon Balance Landscape Scale:
Discharge Competence

gCmlyr

Cohen et al., 2011

wet relative hydrologic conditions dry

Watts et al. 2010



The SOC Hypothesis — Linking Hydrology and the
Carbon Budget

Danielle Watts: “Hydrologic Modification and Peat
Dynamics in the Everglades Ridge-Slough Mosaic”
(tropical@ufl.edu)
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The SOC Hypothesis — Analytical Modeling
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James Heffernan: “Discharge Competence as a Mechanism for Peatland Pattern Formation”

(james.heffernan@duke.edu)

Discharge (Q)
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The SOC Hypothesis — Pattern Metrics

v = 0.0568In(x) - 0.2312
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Jing Yuan: “Analysis of Patch Geometry Characteristics in the Ridge-Slough Patterned
Landscape in the Everglades” (yj@ufl.edu) — Poster # 269, Session 2
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The “Self-Organizing Canal” (SOC) Hypothesis

Landscape Scale:

Point Scale: Carbon Balance ,
Discharge Competence
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Cohen et al., 2011

wet relative hydrologic conditions dry

Watts et al. 2010



Hydrological Modeling: Methods

Approach: 2-D finite-difference model (SWIFT2D; USGS, 2004) to model

flow through ridge-slough landscapes.

1. Topography (Ridge Height):
<«—2000 m—

4000 m

2. Ridge Prevalence 3. Anisotropy, Orientation




Hydrological Modeling: Test Domains
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Hydrological Modeling: Simulated Domains




Effect of Patch Anisotropy on Flooding Depth

High Anisotrop
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e Depth difference = f(flow)
* Will depth differences at low flows drive different
flooding dynamics (hydroperiod)?




a. Measured Surface Water Elevation (SWE)

Elevation (m)

4

3.5

3

2.5

—— SWE-BL
---- Ridge Elevation
------- Slough Elevation

Depth & HP in BL

1992

1995

1998

2001

2004

2007 2010




Effect of Patch Anisotropy on Hydroperiod
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 Ridges in most anisotropic CParalel
landscapes are dry ~4x as 20 -
frequently as those in
Benchmark

isotropic |andscapes j [ 7] Rt et AR IS PEEEICSR - R, S

10 y =0.064 In(x) + 0.043

R?=0.98

e Variance in hydroperiod
likely driven by “quality”
of connectivity: presence,
location, and geometry of

slough connectivity (e.g,
DCI; Larsen et al., 2012)

Percent of Time Ridges are Dry (%)

Orthogonal
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Effect of Patch Anisotropy on Hydroperiod
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* A HP ranged from 0 to 140 days in any particular year
* For e = 1, average AHP = 40 days yr* = increase of 74% over BL
* For e = 2, average AHP = 20 days yr* = increase of 37% over BL




Effect of Patch Anisotropy on Hydroperiod
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The SOC Hypothesis: Take-home Message

* Landscape geometry affects hydroperiod
* Strong, anisotropic distal negative
feedback - pattern geometry
* The SOC may be sufficient to explain the 51
linear ridge-slough pattern emergence z
without sediment or nutrient redistribution
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